Modifying WAVEWATCH Ill © code

Hendrik L. Tolman
Chief, Marine Modeling and Analysis Branch
NOAA /NWS / NCEP / EMC

Hendrik. Tolman@NOAA.gov

Version 1.1, Jan 2010 WW Workshop 3.3 1/32

Overview

How does compiling of WAVEWATCH Il work.
Why not direct FORTRAN code?
How does preprocessor work.

Adding a pre-compile model option.

Adding a subroutine.

Internal data structure.

Best practices.

Programming style

Adding to the model.

Manual and documentation.

Subversion repository.

Testing.

Version 1.1, Jan 2010 WW Workshop 3.3 2/32

Compile basics

® WAVEWATCH Ill is intended as both
a general modeling framework, and
an efficient operational wave model.

® This implies that
it should be possible to include lots of options in the
modeling framework, but

that the final code as compiled should include only that
what is needed.

® To achieve this, the WAVEWATCH lll source code is not
plain FORTRAN 90, but needs to go through a
preprocessor to obtain the FORTRAN 90 code.

Version 1.1, Jan 2010 WW Workshop 3.3 3/32

Compile basics

®* WAVEWATCH Il follows the FORTRAN 90 standard, and
all files are build as complete modules to enable and
enforce interface checking and use association.

® A typical WAVEWATCH llI file is named

Type Basic wave model routine
dentifier Multi-grid extension routine
Main program
GrADS postprocessor.

Code ID, typically 4 characters, e.g. “srce”

|dentifier that this is a module.
ext File ftn Code requiring preprocessing
extension f90 Plain FORTRAN 90 code.

Version 1.1, Jan 2010 WW Workshop 3.3 4/32

Version 1.1, Jan 2010

Compile basics

® For instance,

contains the module of the basic wave
model that processes source terms, and that will need to
be preprocessed before it can be compiled.

contains the multi-grid wave model
module, requiring preprocessing.
contains the main program wwa3_grid and
requires preprocessing.
does not follow the convention, except

that the file extension indicates that the file does not
need to be preprocessed.

This is part of G. Van Veldder exact interactions
package that is distributed with the wave model.

WW Workshop 3.3 5/32

Compile basics

® Below is part of , Where input source terms are
computed.

® The lines starting with are optional pieces of code,
activated by their “switches” , in this case for

linear input, or
exponential input.

2. Calculate source terns

2.a I nput.

'/ LN1 WBSLNL (, FHIGH, USTAR, U1ODIR , VSLN
I/ LNX WBSLNX

I/ ST1 WBSI N1 (SPEC, WN2, USTAR, U10D R , VSIN, VDIN)

'/ ST2 WBSI N2 (SPEC, CGl, WN\2, U10ABS, U10DI R, CD, Z0, &
'/ ST2 FPI, VSIN, VDIN)

'/ ST3 WBSI N3 (SPEC, CGl, WN2, U10ABS, USTAR, DAI R DWAT, AS, &
'/ ST3 UlODI R, Z0O, CD, TAUWK, TAUWY, VSIN, VDI N, LLWS)

I/ STX VBSI NX

Version 1.1, Jan 2010 WW Workshop 3.3 6/32

Compile basics

® Switches to be using in the compilation are stored in the
file:

This file is stored as In the main

WAVEWATCH Il directory. The installation script makes
links to the original file in most work directories.

If the switches NL1 and ST2 are present in the

file, the corresponding part of the preprocessed code
will become :

1 2. Cal cul ate source terns

I 2.a I nput.

CALL WBSLN1 (WN1, FHI GH, USTAR, Ul10DI R, VSLN)

CALL WBSIN2 (SPEC, CGl, W\2, U1O0ABS, Ul0D R, CD, Z0,
FPI, VSIN, VDI N)

Version 1.1, Jan 2010

WW Workshop 3.3 7/32

Compile basics

How does this work

A FORTRAN 77 program is compiled during
installation of the model to produce the program w3adec.

® w3adc is managed by the script ad3, also put in place
during model installation.

® ad3 also uses the comp script, in which compiler options

are set.

® ad3 and the link script are called in the , Which is
used by the standard UNIX/Linux make facility

® The IS updated by the script make_makefile.sh,
every time the file is modified.

® make_makefile.sh calls w3_new to touch the appropriate
files to be recompiled by make.

® And all this is managed by the w3_make script.
Sounds complicated ?

Version 1.1, Jan 2010 WW Workshop 3.3 8/32

make _makefile.sh -—

A4

make (UNIX/Linux)

Frequent interactive use

Possible interactive use

Version 1.1, Jan 2010

Compile basics

ad3

Modify only once

Manual chapter 5

WW Workshop 3.3 9/32

Compile basics

In summary:
Only w3_make is normally used :
w3_make wwg3_grid compiles this program only.

w3_make by itself compiles all recognized
WAVEWATCH Il programs.

® ad3can be run interactively, particularly if test output needs
to be switched on in selected routines.

® make_makefile.sh and w3_new can be run interactively as
indicated in the manual.

® The rest of the system you will never see after the model is
installed, but

It is essential that comp and link are set up with compiler
error capturing if codes are to be edited.

Version 1.1, Jan 2010 WW Workshop 3.3 10/32

Compile basics

Does and don’ts

® Even if the system may look a little complicated, do use it
by properly modifying the .ftn files.
This is the only way of modifying this inside
WAVEWATCH Ill in such a way that it can be ported to
the distribution version of the model.

It is therefore more or less required by the license.

® w3 _source will give you the clean FORTRAN files and the
corresponding
Use this for operational implementations of the model.
Don’t use this for upgrading source code.
Use it for MS Windows applications
.... better still, don’t use Windows

WW Workshop 3.3 11/32

Version 1.1, Jan 2010

Modifying code

Code may need to be updated for bug fixes,
or as part of systematic model development.

® For simple edits my preferred way to work is:

Use In3 to make a link to the file to be updated in the
directory under the main wave model directory.

Edit the link in the directory, and test there with
w3_make and by running standard tests.

Note: there is a link to the file in this directory to
modify the model configuration.

After the modification is satisfactory, remove the links
from the directory.

HINT:: use arc_wwatch3 to make archive files before and
after code modification, if no other management tool like
subversion is used. The resulting .tar files can be re-
installed with install_wwatch3.

Version 1.1, Jan 2010 WW Workshop 3.3 12/32

Modifying code

If systematic modifications or additions to the code are
made, there will likely be a need for:

Adding subroutines in existing modules.
Adding subroutines in new modules.
Adding old switches to existing subroutines.
Adding new switches to the model.

® These actions will be discussed in the following slides, and
are also described in section 5.5 of the manual.

® Note that if a new module with new switches is included,
instructions for both modifications need to be followed.

® See HINT on previous slide

Version 1.1, Jan 2010 WW Workshop 3.3 13/32

Modifying code

Adding subroutines in existing modules.

® This is in principle simple. Add the code and recompile
using w3_make.

® A complication may occur is the subroutine is used by other
modules. In that case, the proper “use” statement needs to
be added to the calling module.

This may modify relations between files in the
and make commands.

Run make_makefile.sh manually to assure that the
is updated, before w3_make is run.

This only needs to be done if “use” statements are
modified.

Version 1.1, Jan 2010 WW Workshop 3.3 14/32

Modifying code

Adding subroutines in new modules.

® This typically adds a new file like or
to the model files.

® To assure that the new files are included in the compilation,
make_makefile.sh needs to be modified as follows:

Add module name to sections 2.b and 2.c to assure
inclusion in the under proper conditions.

Add module name and object file names to section 3.b
to assure proper dependencies Iin

Run make_makefile.sh manually and check in
directory for proper inclusion of new file.

NOTE: make makefile.sh checks use statements in .190
nreprocessed) files to determine file dependencies.

Version 1.1, Jan 2010 WW Workshop 3.3 15/32

Modifying code

Adding old switches to existing subroutines.

® Relationships of switches to model files are maintained in
the w3_new script.

® |f old switches are added to new files the following actions
are needed:

Add the new file to the lists of files to be touched in
section 2 of w3 _new.

If the switches include use statements, interactively run
make_makefile.sh to assure that the IS
updated as needed.

Version 1.1, Jan 2010 WW Workshop 3.3 16/32

Modifying code

Adding new switches to the model.

® After a new switch is added to an existing file, the following
action is required.

If the switch is part of a new group of switches of which
one is to be selected, add a new ‘keyword’ ($key) to
section 2 of w3_new.

Update files to be touched in section 2 of w3_new as
necessary.

Add ‘keyword’ and/or switches to section 2 of
make_makefile.sh.

Run make_makefile.sh and check consistency of

Version 1.1, Jan 2010 WW Workshop 3.3 17/32

Data structures

When adding to the wave model, it is essential
to understand how data is stored.

Model version 1.18 (1999) Model version 2.22 (2002)
® FORTRAN 77 ® FORTRAN 90
® COMMON data structure ® Modular
® Single static data ® Obiject oriented, static
structure. data structure bundled
with code

data
code (COMMON) code

WW Workshop 3.3 18/32

Version 1.1, Jan 2010

Data structure

Model version 3.06 (2005) Present status :
® Modular FORTRAN 90 ® F77 and COMMON data
® Dynamic / multiple data structures are obsolete.
structure (modular) Exception are aux
® Small overhead (7% on codes like
Linux, 2% on IBM SP) ® Data embedded in

modules largely obsolete.

Use in model
development, see
best practices.
code ‘ ® Data in data modules now
the norm in 3.14.
IIII

Exception: file

Version 1.1, Jan 2010 WW Workshop 3.3 19/32

Data structures

How is this done? i/ data structure
: : 1/

° I.nS|de the code yarlables Io.ok TYPE GRID

like they are defined for a single INTEGER :1 NX, NY

grid, for instance, the grid REAL, POINTER :: ZB(:,:)

- : END TYPE GRID

dimensions NX, NY, and a bottom i

depth array ZB. I/ Data storage
® However, these variables are t/ YPE(GRID), TARGET .

declared as pointers. ALLOCATABLE :: GRIDS(:)
® The actual data is stored in a YA

user-defined type GRI D. :; Pointers
® An array of GRI DS of this type | INTEGER, POINTER :: NX, NY

allows for data of multiple grids REAL, POINTER 1t ZB(:, 1)

to be stored simultaneously.

® The pointers are then set to
represent values of the grid NX => GRIDS(I)%NX

: . NY => GRIDS(I)%NY
rrently under consideration.
currently under consideratio ZB => GRIDS(I)%ZB

|/ kkhkkkhkkkhkkx

Version 1.1, Jan 2010 WW Workshop 3.3 20/32

Data structures

® There are many data structures defined in the model.

® All essential model data for model setup as well as dynamic
wave conditions is stored in five data modules:

w3gdatmd.ftn Grid and model setup data.

w3adatmd.ftn Auxiliary data used and stored internal to
the model only.

w3idatmd.ftn Model input data.
w3wdatmd.ftn Basic wave model state.
w3odatmd.ftn Model output data.

® Each module contains data for as much grids as identified
iIn the mosaic (including model input and spectral point
output grids).

Version 1.1, Jan 2010 WW Workshop 3.3 21/32

Best practices

For those who want to modify / contribute to WAVEWATCH
lll, a best practices guide is available.

® Note that as a part of the license, additions made to the
model have to be offered to NCEP for inclusion in future
model distributions.

® Best practices cover :
Programming style
Adding to the model.
Manual and documentation.
Subversion repository.
Regression testing.

® These issue will be touched upon briefly here, but the guide
will be the authoritative source.

Version 1.1, Jan 2010 WW Workshop 3.3 22/32

Best practices

Programming style:

® Use WAVEWATCH Ill documentation style (see templates).
® Use coding style:
Free format but layout as in old fixed format.

Upper case for permanent code, lower case for
temporarily code. Latter can be included as permanent
testing using ! / Tn switches.

® Maintain update log at header f documentation.

® Embed all subroutines in modules or main programs, using
naming convention outlined before.

® Follow FORTRAN 90 standard, with best practices as
outlined in section 2 of the guide.

® Provide appropriate documentation in LaTeX format for
inclusion in the manual.

WW Workshop 3.3 23/32

Version 1.1, Jan 2010

| WAVEWATCH | | | NOAA/ NCEP |
[John Doe |
i [FORTRAN 90 |
| Last update : 01-Jan- 2010 |

i/ 01-Jan-2010 : Origination. (version 4.xx) SUbrOUtlne template

=

Pur pose :
Met hod :
3. Paraneters :

NS

Paranmeter |ist

. I 10. Source code :
4. Subroutines used : :

!

!

!

!

!

|

|

|

! R I T T e L EEE TR /

! Nanme Type Mdule Description , g USE VBSERVMD. ONLY: STRACE

L e s e e !) :

: 1/

! STRACE Subr. WBSERVMD Subrouti ne I MPLI I T NONE

ittt ettt 1/

: Cal l ed by : b bbb bbb /

; 5. & e I/ Paranmeter |ist

: 1/

! Nanme Type Mdule Description |, /

: """""""""""""""""""""""" I/ Local paraneters

e 1/

! /S | NTEGER, SAVE . IENT = 0

! 6. Error nessages : 1/

| 7. Renarks ;/ ___ /

| 8. Structure : ;/

L Sw tches : /'S CALL STRACE (IENT, ' VBXXXX)

! /S Enabl e subroutine tracing. ,/
1/ End of MWBXXKK = - s o mmm s oo i o o e e o e e e e e i e oo /
1/

END SUBROUTI NE | NSBTX

Version 1.1, Jan 2010 WW Workshop 3.3 24/32

Best practices

WAVEWATCH | | |
John Doe
FORTRAN 90 |
01-Jan- 2010 |

01-Jan-2010 : Origination. version 4. xx
. (: module template
Copyright 2010 National Wather Service (NW),
Nati onal Oceani ¢ and Atnospheric Administration. Al rights
reserved. WAVEWATCH I Il is a trademark of the NW5.
No unaut hori zed use without perm ssion.

Pur pose :
Vari abl es and types :

Type Scope Description !
6. Switches :

/'S Enabl e subroutine tracing.

Source code :

Remar ks : END SUBROUTI NE WBXXXX

End of nodul e WBXXXXNVD

END MODULE WBXXXXMD

Version 1.1, Jan 2010 WW Workshop 3.3 25/32

Best practices

Programming style cont’ed:

® |f existing packages are added to the wave model, then
such packages do not need to be re-coded to conform to

our standards.
® Such packages will require interface routines, which are
expected to confirm to the standards.

® Copyright of NWS may extend to interface routines, but
obviously not to linked in packages.

WW Workshop 3.3 26/32

Version 1.1, Jan 2010

Best practices

Adding to the model
(no NCEP subversion access)

® Propagation schemes and source terms:
Use available “user-defined” dummy modules.
Follow coding guidelines.

Provide file with necessary modifications to
, and all other model files

that need to be updated.
Provide (previous) test cases with expected results.
Make each module self-contained.

Define all variables in the module header. We will
integrate them in the full data structure.

Separate initialization and computation as outlined
in the dummy modules.

Version 1.1, Jan 2010 WW Workshop 3.3 27/32

Best practices

Adding to the model
(no NCEP subversion access)

® For more intricate modifications to the code, consult with
NCEP code managers on how to do this and on how to
provide this to NCEP.

® New pre- or postprocessors should be provided in their
entirety, included in the compile and link system.

HINT: when developing new source terms, include and test
them in the postprocessors ww3_outp and gx_outp first,
before including/testing them in actual wave model
integration.

Version 1.1, Jan 2010 WW Workshop 3.3 28/32

Best practices

Adding to the model
(with NCEP subversion access)

® Same rules apply as for those without svn access with
following exceptions:

NCEP code managers will assign switches to new
sources and propagation scheme to be used instead of
the ‘X' switches.

Developers will be responsible for integration in the data
structure:

Do this only after rigorous testing of self-contained
system.

NCEP code managers will add new code to the TRUNK
of the repository. Changes to be provided relative to
most recent TRUNK, not to most recent distributed
version

WW Workshop 3.3 29/32

Version 1.1, Jan 2010

Best practices

Manual and documentation.

® Provide full LaTeX documentation for inclusion in the
manual:

NCEP svn users have access to manual, and are
expected to add to it directly.

NCEP will provide editing.
Others provide separate files.
NCEP will integrate.
Use BibTEX.

Use dynamic references to equations, figures and tables
only.

Version 1.1, Jan 2010 WW Workshop 3.3 30/32

Best practices

Subversion repository.

® See description in the guide.
Full documentation in GNU ChangelLog format required.

Testing

® Regression testing procedures will be established in the
near future, most likely based on experiences and tools
provided by Erick Rogers and Tim Campbell from NRL

Stennis.

WW Workshop 3.3 31/32

Version 1.1, Jan 2010

The end

End of lecture wwws 3.3

Version 1.1, Jan 2010 WW Workshop 3.3 32/32

